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A Reciprocity Formulation for the EM Scattering

by an Obstacle Within a Large Open Cavity
Prabhakar H. Pathak, Fellow, IEEE, and Robert J. Burkholder, Member, IEEE

Abstract— A formulation based on a generalized reciprocity

theorem is developed for analyzing the external high frequency
EM scattering by a complex obstacle inside a relatively arbitrary
open-ended waveguide cavity when it is illuminated by an ex-

ternal source. This formulation is also extended to include EM
fields whose time dependence may be non-periodic. A significant
advantage of this formulation is that it allows one to break up the
analysis into two independent parts; one deals with the waveguide

cavity shape alone and the other with the obstacle alone. Thus,

it is useful for independently estimating the scattering effects

due to modifications in the waveguide cavity shape for a given

type of large complex obstacle, and due to different types of

complex obstacles for a given type of large open waveguide cavity
shape, respectively, without requiring one to treat the entire

configuration each time one of these is changed. The external
scattered field produced by the obstacle (in the presence of the
waveguide cavity structure) is given in terms of a generalized
reciprocity integral over a surface ST corresponding to the

interior waveguide cavity cross-section located conveniently but
sufficiently close to the obstacle. Furthermore, the fields coupled
into the cavity from the source in the exterior region generally

need to propagate only one-way via the open front end (which is

directly illuminated) to the interior surface ST in this approach,

and not back, in order to find the external field scattered by the

obstacle.

I. INTRODUCTION

A FORMULATION based on a generalized reciprocity

theorem is developed for analyzing the high frequency

electromagnetic (EM) scattering by relatively arbitrary open-

ended waveguide cavities containing a large complex interior

obstacle or termination. An extension of this formulation

to include EM fields with non-periodic or arbitrary time

dependence is also presented. These results are of significant

interest in scattered field and EM coupling predictions. An

important advantage of the formulation developed here is

that it allows one to independently estimate the effects on

the overall cavity-obstacle scattering due to modifications in

the waveguide cavity shape for a given interior obstacle,
and clue to different obstacles for a given open waveguicte

cavity shape, respectively, without having to analyze the entire

cavity-obstacle configuration each time one of them (i.e., the

cavity shape or the obstacle) is changed. The latter aspect will

be discussed in more detail in a separate paper,
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Fig. 1. Originat problem configuration.

A typical geometry of the general problem under consid-

eration is depicted in Fig. 1. The geometry is illuminated by

an external current source (at P’), and the observer is also

assumed to be in the external region (at P). It is primarily

of interest in this study to be able to analyze the external

scattering from a geometry of the type in Fig. 1 for cases

where the open front end of the cavity is directly illuminated

by the source, and for observation points which are also in

direct view of the open front end, as shown in the figure.

Furthermore, the medium surrounding the cavity structure is

taken to be free space and the external surface as well as

the interior cavity walls are assumed to be impenetrable (e.g.

perfectly conducting walls with or without material coating).

ST is an arbitrary surface which either encloses the interior

obstacle or partitions the obstacleltertnination region from the

rest of the open-ended wavegttide region (as in Fig. 1), and

SE is the surface defined by the open back end of the cavity

beyond the obstacle. It is noted that as a special case, the back

end of the cavity (at SE) could be closed, or the obstacle

itself could form a termination which completely closes the

back end of the cavity. Furthermore, the waveguide region

beyond the obstacle could also, as a special case, be made

semi-infinite. These latter special cases of the more general

situation depicted in Fig. 1 are discussed in Section II.

The formulation for the field scattered into the exterior

region by just the interior obstacle is based on a generalized

reciprocity integral which requires a knowledge of the fields

on the surfaces ST and SE due to the illumination from the

original current source (at F“) with the obstacle present, and it

also requires a knowledge of the fields on ST and SE due to a

conveniently chosen impressed test current source placed at the
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observer location (at P) but in the absence of the obstacle and

with the original source turned off. This reciprocity integral

which exists over ST and SE is shown in the next section to

furnish the field scattered into the exterior by the obstacle

in the presence of the waveguide cavity structure. Such a

formulation has the additional advantage that, in most cases

of practical interest, the fields coupled into the cavity from the

sources in the exterior region need to propagate only one-way

(in the forward direction) via the open front end to the interior

surface ST, and not back (in the reverse direction), in order

to find the external field scattered by the obstacle. More will

be said about this property later.

The development of the generalized reciprocity integral is

given in Section II, and Section III discusses some methods for

finding the relevant field quantities which appear within this

integral. Section IV presents some numerical results based on

this development, and compares them with the corresponding

solutions obtained without the use of the generalized reci-

procity integral for the sake of establishing art independent

check. An e~‘t time convention for the fields and sources is

assumed and suppressed for the periodic or time harmonic

case. Also, the cavity-obstacle configuration is assumed lto be

embedded in free space.

II. GENERALIZED RECIPROCITY IN~GRAL FOR TIME

HARMONIC INTERIOR OBSTACLE SCATTERED FIELDS

Consider the open-ended waveguide cavity configuration

illustrated in Fig. 1 which is illuminated by art external im-

pressed electric current source ~ (~’) and a magnetic cument.,
source ~ (P’) at P’. Let (EC, ~C) denote the (electric,

magnetic) fields which are produced by these sinusoidally

time varying impressed sources ~ (P’) and ~ (P’) when the

cavity structure is present but with the interior obstacle absent.

The ? (P’) and ~ (P’) radiating in the presence of the cavity

structure and the obstacle produce the fields (~, ~) where

E= E:+E: (1)

R= RC+T: (2)

and (~~, ~~ ) therefore denote the fields scattered by just the
interior obstacle but in the presence of the cavity walls. Note

that the above fields satisfy the following Maxwell’s Curl

equations:

{

v x z = –jwpoz – mt(P’)

v x 77= 7( P’) +jweoz }
(3)

{

v x z:=–jw/.JoH: –ti(P’)

}v x Fc = 7( P’) + jw@ ‘
(4)

and hence,

(5)

It is of primary interest to find (~~, ~~) at any external

point P when P is on the same side of the cavity as the original
source at P’. The fields (~~, ~~) can be found in terms of a

set of equivalent sources on ST and SE (of Fig. 1) along with
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Fig. 2. Related test problem configuration.

a set of test fields, (Et, Et ), which are produced by an electric

current test source ~t (P) at P that has the same frequency as

(~, ~) when it radiates with the cavity structure present

but with the interior obstacle absent, as illustrated in Fig.

2. The fields (Et, Et) satisfy the following Maxwell’s Curl

equations:

{

v x g = ~jwpozt
V X Ht = Jt(P) + jWEo~~

}

(6)

.—
The fields (~~, ~~) can be related to the fields (Et, ~~) via

the divergence theorem applied to the quantity ~~ x ~t – Et x

~~ within the volume V. which is bounded by the surfaces

[ST + SE + Se + S, + 2] as shown in Figs. 1 and 2. Thus,

I v.@: xEt-Etx77:)dv

v.

where ii is the unit normal vector which points into the

region Ve. Using (5) and (6), the L.H.S. of (7) reduces, via the

radiation and boundary conditions together with some vector

algebra, to

It is noted that the fields satisfy the radiation condition on

X as E ~ co, hence the integral on X vanishes in (7). For

perfectly conducting walls, both ii x ~~ as well as ii x Et
vanish on Se + Sg, so that the integrals on those boundaries

also vanish in (7); on the other hand if these wqlls are coated

with absorbing layers, then Se -i- Sg is taken to be on the

conducting walls, whereas, if the walls are impenetrable then

S. and S9 can be made to lie just within the impenetrable

wall of some thickness (however small), so that the integrals

on Se and S’g can be made to vanish again in (7). This leaves

one with integrals only over ST and SE on the R.H.S. of

(7), thereby leading directly to the expression on the R.H.S.
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of (8). The result in (8) constitutes a generalized reciprocity

relationship because (~~, ~~ ) and (Et, ~t) are evaluated

in different environments, i.e., (~~, ~~ ) are found with the

interior obstacle present while (-Et, Ht ) are found with the

interior obstacle absent. In contrast, the standard reciprocity

theorem [1] relates a pair of fields (due to a pair of sources)

in the same environment.

Let the test current ~t (P) be a point source of strength ~t;

thus,

7*(P)==F’t($(7=” – 7=) (9)

where F is the position vector of the observation point at P

and T“ is the variable of integration (in Ve) on the L.H.S. of

(8). Now, from (8) and (9) one obtains,

When the source and observer are in direct view of the

open front end, as in the case shown in Fig. 1, then the

contribution to ~~ (T) at P from the integration over SE in

(10) is, in general, sufficiently small in comparison to that
from the integration over ST for a relatively large obstacle,

as is assumed to be the case here. Therefore, (10) can be

approximated in this case by:

It is noted that (11) is obtained exactly if the cavity is closed

at the end SE, or if the obstacle is assumed to totally block

SE from ST. One can also arrive at (11) exactly if the surface

SE is allowed to recede to infinity so that the open-ended

cavity configuration in Fig. 1 becomes semi-infinite (as SE

recedes to cm). In the latter case, one must impose a physical

requirement that there are only outgoing waves crossing SE

and no waves incoming (or reflected back) into the cavity

from SE as SE ~ cc. This in turn implies that the waveguide

cavity region near and at ST must be assumed to be uniform

(i.e., with a constant cross section) if SE ~ co; one can
then define an orthogonal set of waveguide modes at SE

and express (~~, ~~ ) as well as (13t, Ht ) in terms of these

modes within the uniform waveguide region. It follows from

modal orthogonality that the integral over SE (as SE ~ CO)

vanishes in (10) for the latter case thereby leading to the

desired result in (1 1). On the other hand, if the waveguide

cavity is made lossy (or even slightly lossy) as SE ~ cc,

then the integral over SE in (10) vanishes once more thereby

leading again to (11). Furthermore, if it is assumed that the

interior reflection of the waves back into the cavity from the

electrically large open front end is small, then (~~, ~~ ) at

ST may be approximated simply by the fields denoted by

(~~, ~~) within the cavity which are scattered by the obstacle,
but which exclude the effects of all multiple wave interactions

between the obstacle and the open front end. Likewise. one

may approximate (-Et, ~t ) at ST in (11) by the fields denoted

as (~f, @ ) which arrive directly at ST from ~t (P) via the
open front end, but which exclude any contributions arriving

from ~t (P) via the open end at SE in Fig. 2 and which also

exclude any effects of multiple wave interactions between the

open front end and the back end SE; therefore, (~tg. ~~ )

are found by tracking the fields one way from Jt (P) at

P to ST via the open front end. Finally, under the above

approximations which are assumed to hold true, (11) leads to

the following desired result for the field ~~ (P) scattered at P

by the interior obstacle when the cavity-obstacle configuration

of Fig. 1 is illuminated externally by ~ (P’); namely,

E:(P) ~P~ N
-/

(~~ X ~: -~~ X ~:) .fidS. (12)
ST

It is noted that the ~~ (P) on the L.H.S. of (12) can be found

via the R.H.S. of (12) in terms of (~~, ~~) and (~~, ~tg),

both of which need to be evaluated only over the interior

surface ST near the obstacle. An alternative form of (12) can

be expressed as:

E:(P) . Pi =
-!

(~: x ~; -~~ X ~:) .ndS (13)
so

where the integration is over a closed surface So which

encapsulates the obstacle.

III. ON THE EVALUATION OF (~~, ~~) AND

(El, R:) AT ST FOR THE TIME- HARMONIC CASE

For relatively arbitrary cavities and for high frequencies,

(~~, ~~) in (12) can be evaluated, for example, by the

shooting and bouncing ray (SBR) technique [2]–[5], the Gauss-

ian beam (GB) shooting method [4], [5] or the generalized

ray expansion (GRE) technique [5], [6]. As mentioned in the

introduction, the use of (12) requires that the fields from the

exterior sources at P and PI need to propagate only one-way

via the open front end to ST and not back. Furthermore, the

GB/GRE methods require shooting a set of beams/rays only

once from the open front end since the launching directions

of these beamslrays and hence the propagation paths within

the cavity are independent of the source location (i.e., whether

the excitation be at the original source at P’ or be at the

observation point P for generating (~~, ~~g ) ); only the initial

beam/ray amplitudes depend on the excitation. The fields

(~~, ~~) can be found by first obtaining (~g, ~’g) at ST,
which are the fields incident from the original source ~i (P’)

at P’ in the absence of the interior cavity obstacle; (~’g, ~’g)

are found in exactly the same manner as (13~, ~~ ) and are

thus based on the same assumptions and approximations as

those required to find (~~, ~tg). It may be possible that

the interior reflection from some types of obstacles can be

analyzed using ray methods, in which case the ray fields

(~g, ~’g) enter the cavity after being excited by the original
source ~, (P’) and continue beyond ST into the 06stacle-

cavity region to subsequently reflect back from the Qbstacle

to ST as (~~, ~~ ). In the event that an analytical approach

based on ray methods either cannot be used or d~es not

easily lend itself to find (~~, ~~ ), it may be possible to

employ a numerical approach to accomplish this task. Such

a numerical approach may be based on a partial differential

equation solution of the wave problem using the finite element
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or finite difference methods, or the integral equation solution

based on the method of moments, or a hybrid combination of

both methods to provide (FO, ~~) once (~’g, ~g ) is given.

In these numerical methods, it would be worth employing the

“Green’s function” for the cavity without the obstacle in the

region beyond ST which would otherwise contain the obstacle,

so that only the fields (or currents) induced inlon the obstacle

would need be found, because the presence of the cavity

walls is automatically accounted for by this Green’s function.

Furthermore, the Green’s function for the cavity without

the obstacle can be represented locally by an eigenfunction

expansion for waveguide cavities with, for example, a circular

cross section in the region where the obstacle would otherwise

be present, or be approximated via ray methods in the case

of arbitrary cavities for which modes cannot be defined in

the usual manner. If neither the analytical nor the numerical

methods can be employed effectively to find (~~, ~~ ), as

may be the case for highly complex and electrically large

obstacles, then alternative (e.g. experimental) methods must

be employed.

It is noted that the (~~, ~~) can also be found, in principle,

via a different approach which employs any of the aforemen-

tioned techniques such as the ray methods, numerical methods

or other alternative (e.g. experimental) techniques to develop a

local Green’s function for the obstacle-cavity region contained

between ST and SE with the obstacle present. This local

obstacle-cavity Green’s function would provide the response

at ST, due to a point source also located in the same plane ST

and with the obstacle present. Such a Green’s function can

be constructed approximately, but with sufficient accuracy,

to emphasize only the local cavity-obstacle region between

ST and SE; it woidd then also furnish the obstacle response

(~~, ~~) at ST due to an excitation (~g, ~g) at ST ,due to

the original source ~i at P’. The evaluation of (~zg, ~tg ) and

(~~, ~~) on ST are totally dependent on the long waveguide

cavity shape fruin the open front end (directly illuminated by

~i (P’) and ~t (P), respectively) to the fictitious plane ST;

whereas, the local cavity-obstacle Green’s function alluded

to above (and which plays a role in furnishing (~~, ~~))

depends primarily on the short cavity section between ST

and SE containing the obstacle. Thus, one can separalte the

effects of the short obstacle region of the cavity from the

rest of the cavity, and indeed very effectively ascertain how

a given obstacle affects a variety of long waveguide cavity

shapes connected to the short part of the cavity containing

the obstacle, and vice versa. Yet another different, but related,

approach which separates the analysis of the shape dependent

cavity region from the obstacle region is described in [7]–[9].

IV. GENERALIZED RECIPROCITY INTEGRAL FOR

INThRIOR OBSTACLE SCATTERED FIELt3S FOR

ARBITRARY TIME DEPENDENT EXCITATION

The general result obtained in (8) of Section II for sinu-

soidally time varying (or time harmonic) fields can be extended

directly to fields whose time dependence is arbitrary, as will be

shown below. indeed, a procedure for extending the frequency

domain (or time harmonic) form of a reciprocity theorem as

originally developed by Lorentz into a form valid for fields

with non-periodic time dependence has been presented by

Goubau [10]. The present procedure for the development of

the time dependent form of (8) follows essentially from [10],

Since (8) represents a result which is valid for all frequencies

(u), it can be converted as usual into the time domain via the

inverse Fourier transform defined by

f(t) = ~ [wF(w)e~W’ dw (14a)
cc

where ~(t) is an arbitrmy time dependent function synthesized

from the frequency domain spectrum function $’(w). The

l’(w) can be found from the direct Fourier transform of f(t)

F(w) =
!“

_m f(T)e-’UT d~. (14b)

The relationship in (14a) and (14b), between the transform

pair ~(t) and F(w), is commonly denoted by:

j(t) + F(w). (14C)

Next, employing the spectral inversion of (14a) to (8) yields

The orders of integration have been interchanged in (15). Fol-

lowing the notation in (14c), one may introduce the necessary

time domain field quantities via the relations:

E:(F’;t) * E:(T;w); (16a)

E:(F; t) ++ E:(F; w); (16b)

Et(F; t) + Et(F, w); (17a)

zt(T-; t) H E@; w). (17b)

;t(F, 7“; t) H 7t(F, 7=”;w). (18)

At this juncture, it is useful to represent the (~~, ~~) spectral

(frequency dog~in) values in (15) by the arbitrary time domain

functions (E;, h,) which they synthesize;

+ Z~(F;7) x 77,(7; w)] ~on (19a)
ST+SE
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Performing the integration on w in (19a) yields

/ /“
dv d~ z:(T; ~) . jt(~, T; t – T)

V=

= ~ds~d7h [~,(~;T)x~t(T;~-T)

+ ;;7;7) x q(~t - T)] ,On (19b)
ST+s~

If one assumes an impulsive behavior for ~t in both space and

time, then:

jt(T, F’’; t) = F’~6(T- – ?=”) c$(t). (20)

It follows from (20) that ~,(T, 7“; t – -r) = ~t6(T– T) 6(t – 7);

incorporating this information into ( 19b) yields

cc

E: (F; t) . Pt = J/ds dr ii

ST+SE –cc

~ [E:(fiT) x Z(77-T)

+ Z:(T;T) x E,(fit - 7)] ~on (21)
ST +s~

The above result in (21), which is in the time domain, is the

counterpart of (8) for the frequency domain. The L.H.S. of

(21) can be found via a time convolution of the fields of the

original arbitrarily time varying source located at P’, in the

presence of the cavity and obstacle, with the fields of a time

impulsive point test source at P, in the presence of the cavity

but in the absence of the obstacle. It is noted that the time

convolutions are performed at each point in ST + SE; these

are then superposed as evident from the integral over ST+ SE

on the R.H,S. of (21).

If one makes the approximations leading from (8) to (12),

then one can likewise obtain a time-dependent form of (12)

using the same procedure as above; thus:

where

E:(T; t) * E:(T”; w); ~~(~; t) * ~~(~; w) (22b)

72:9(7; t) * Etg(T; w); zl~(~: t) + Ftg(T; LIJ) (22C)

Since the result in (12) is obtained from (8) after using high

frequency approximations, it is thus reasonable to expect that

the time domain result for E: (F, t) in (22a) (obtained from

(12)) will provide a useful approximation to the time domain

result for E: (T, t) in (21) (obtained from (8)) only during the

early to intermediate times of arrival of the signal ~~ (F, t)

which is observed at the point P. The quantities on the right

side of (22a) may be found by transforming the corresponding

frequency domain fields (see (22b) and (22c)) into the time

domain; alternatively, they could be found directly in the time

domain. The latter aspect will be discussed in more detail in

a separate paper.
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Fig. 3. Echo width versus aspect angle for a ‘2-D S-shaped open-ended cavity
with a planar termination found using the reciprocity integral (RI) with the

GRE and SBR methods.

V. NUMERICAL F&SULTS

Figs. 3 and 4 show the EM echo width vs. aspect angle

patterns of a perfectly conducting 2-D S-shaped open-ended

waveguide cavity with a planar interior termination. The 2-D

echo width cr is defined by

(23)

where P is the vector to the far field observer (at P), ~~ (~) is

the field at F scattered by, the interior termination of the cavity,

as given by (12), and IF I is the magnitude of the plane wave

field incident on the open front end (P’ is located at infinity to

create an incident plane wave). In Figs. 3 and 4, the echo width

is given in decibels relative to a wavelength (DB W) (i.e., as

10 log o with o in free space wavelengths), and the incident

electric field is polarized perpendicular to the plane of the

geometry. It is noted that only the first order scattering from

the interior of the cavity is shown in these figures. No external

scattering or multiple wave interaction effects are included.

The solid line in the plots of Figs. 3 and 4 is calculated using

the hybrid asymptotic-modal method [4], [5] and is used as a

reference solution. The dashed lines are solutions based on the

SBR [2]–[5] and GRE [5], [6] methods; in Fig. 3, the one-way

tracking procedure of the generalized reciprocity integral of
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Fig. 4. Echo width versus aspect angle for a 2-D S-shapedopen-ended cavity
with a planar termination found using aperture integration (AI) with the GRE
and SBR methods.

(12) is used, and in Fig. 4, the two-way tracking procedure of

the aperture integration method is used. The numerical results

in Fig. 3 which are based on the one way ray tracking that

makes use of the reciprocity integral can be obtained almost

twice as fast as the ones in Fig. 4 that require a two-way

tracking. To compute the generalized reciprocity results of

Fig. 3, the ray fields at the termination plane are converted into

parallel plate waveguide modes and the orthogonality property

of the modes is used to easily evaluate (12). Generally, the type

of results in Fig. 3 can be obtained in less than a couple of

minutes on, for example, a VAX 8550 computer.

This method can also be employed with the same degree of

success for 3-D problems which are currently under studly; the

solutions to these will be reported later along with results for

fields with non-periodic or arbitrary time dependence.
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