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A Reciprocity Formulation for the EM Scattering
by an Obstacle Within a Large Open Cavity

Prabhakar H. Pathak, Fellow, IEEE, and Robert J. Burkholder, Member, IEFE

Abstract— A formulation based on a generalized reciprocity
theorem is developed for analyzing the external high frequency
EM scattering by a complex obstacle inside a relatively arbitrary
open-ended waveguide cavity when it is illuminated by an ex-
ternal source. This formulation is also extended to include EM
fields whose time dependence may be non-periodic. A significant
advantage of this formulation is that it allows one to break up the
analysis into two independent parts; one deals with the waveguide
cavity shape alone and the other with the obstacle alone. Thus,
it is useful for independently estimating the scattering effects
due to modifications in the waveguide cavity shape for a given
type of large complex obstacle, and due to different types of
complex obstacles for a given type of large open waveguide cavity
shape, respectively, without requiring one to treat the entire
configuration each time one of these is changed. The external
scattered field produced by the obstacle (in the presence of the
waveguide cavity structure) is given in terms of a generalized
reciprocity integral over a surface Sr corresponding to the
interior waveguide cavity cross-section located conveniently but
sufficiently close to the obstacle. Furthermore, the fields coupled
into the cavity from the source in the exterior region generally
need to propagate only one-way via the open front end (which is
directly illuminated) to the interior surface St in this approach,
and not back, in order to find the external field scattered by the
obstacle.

I. INTRODUCTION

FORMULATION based on a generalized reciprocity

theorem is developed for analyzing the high frequency
electromagnetic (EM) scattering by relatively arbitrary open-
ended waveguide cavities containing a large complex interior
obstacle or termination. An extension of this formulation
to include EM fields with non-periodic or arbitrary time
dependence is also presented. These results are of significant
interest in scattered field and EM coupling predictions. An
important advantage of the formulation developed here is
that it allows one to independently estimate the effects on
the overall cavity-obstacle scattering due to modifications in
the waveguide cavity shape for a given interior obstacle,
and due to different obstacles for a given open waveguide
cavity shape, respectively, without having to analyze the entire
cavity-obstacle configuration each time one of them (i.e., the
cavity shape or the obstacle) is changed. The latter aspect will
be discussed in more detail in a separate paper.

Manuscript received September 26, 1991; revised July 7, 1992. This work
was supported in part under Grant NAG3-476 from NASA Lewis Research
Center, Cleveland, Ohio, and in part by the Joint Services Electronics Program
under Contract No. N00014-89-J-1007.

The authors are with The Ohio State University ElectroScience Laboratory,
1320 Kinnear Road, Columbus, OH 43212.

IEEE Log Number 9206296.

oo INTERIOR
5 OBSTACLE

ol -
i  EXTERIOR j
Ny } STRUCTURE NP /

INTERIOR WAVEGUIDE
CAVITY STRUCTURE had

Fig. 1. Original problem configuration.

A typical geometry of the general problem under consid-
eration is depicted in Fig. 1. The geometry is illuminated by
an external current source (at P’), and the observer is also
assumed to be in the external region (at P). It is primarily
of interest in this study to be able to analyze the external
scattering from a geometry of the type in Fig. 1 for cases
where the open front end of the cavity is directly illuminated
by the source, and for observation points which are also in
direct view of the open front end, as shown in the figure.
Furthermore, the medium surrounding the cavity structure is
taken to be free space and the external surface as well as
the interior cavity walls are assumed to be impenetrable (e.g.
perfectly conducting walls with or without material coating).
St is an arbitrary surface which either encloses the interior
obstacle or partitions the obstacle/termination region from the
rest of the open-ended waveguide region (as in Fig. 1), and
Sg is the surface defined by the open back end of the cavity
beyond the obstacle. It is noted that as a special case, the back
end of the cavity (at Sg) could be closed, or the obstacle
itself could form a termination which completely closes the
back end of the cavity. Furthermore, the waveguide region
beyond the obstacle could also, as a special case, be made
semi-infinite. These latter special cases of the more general
situation depicted in Fig. 1 are discussed in Section II.

The formulation for the field scattered into the exterior
region by just the interior obstacle is based on a generalized
reciprocity integral which requires a knowledge of the fields
on the surfaces S and Sg due to the illumination from the
original current source (at P’) with the obstacle present, and it
also requires a knowledge of the fields on St and Sg due to a
conveniently chosen impressed test current source placed at the
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observer location (at P) but in the absence of the obstacle and
with the original source turned off. This reciprocity integral
which exists over St and Sg is shown in the next section to
furnish the field scattered into the exterior by the obstacle
in the presence of the waveguide cavity structure. Such a
formulation has the additional advantage that, in most cases
of practical interest, the fields coupled into the cavity from the
sources in the exterior region need to propagate only one-way
(in the forward direction) via the open front end to the interior
surface S7, and not back (in the reverse direction), in order
to find the external field scattered by the obstacle. More will
be said about this property later.

The development of the generalized reciprocity integral is
given in Section II, and Section III discusses some methods for
finding the relevant field quantities which appear within this
integral. Section IV presents some numerical results based on
this development, and compares them with the corresponding
solutions obtained without the use of the generalized reci-
procity integral for the sake of establishing an independent
check. An e?“* time convention for the fields and sources is
assumed and suppressed for the periodic or time harmonic
case. Also, the cavity-obstacle configuration is assumed to be
embedded in free space.

II. GENERALIZED RECIPROCITY INTEGRAL FOR TIME
HARMONIC INTERIOR OBSTACLE SCATTERED FIELDS

Consider the open-ended waveguide cavity configuration
illustrated in Fig. 1 which is illuminated by an external im-
pressed electric current source 71'( P'’) and a magnetic current
source M (P') at P'. Let (E,,H,) denote the (electric,
magnetic) fields which are produced by these sinusoidally
time varying impressed sources J (P') and M (P’) when the
cavity structure is present but with the interior obstacle absent.
The J'(P’) and M (P') radiating in the presence of the cavity
structure and the obstacle produce the fields (E, H) where

E=E,+E, (1)
H=H +H, @)

and (E., H.) therefore denote the fields scatiered by just the
interior obstacle but in the presence of the cavity walls. Note
that the above fields satisfy the following Maxwell’s Curl
equations:
{V x B = —jwp,H — Ml(P’)} 3)
VxH=T(P) + jwe B

{VXEQ——jwMoH M(P’)} @
Vx H, =T (P)+ jwe,E, ’
and hence,
VXE :—jwuoH )
V x H _]weoE '

It is of primary interest to find (E., ) at any external
point P when P is on the same side of the cavity as the original
source at P’. The fields (E.,TI.) can be found in terms of a
set of equivalent sources on St and Sg (of Fig. 1) along with

sf

Fig. 2. Related test problem configuration.

a set of test fields, (E;, H;), which are produced by an electric
current test source J4(P) at P that has the same frequency as
(J',M") when it radiates with the cavity structure present
but with the interior obstacle absent, as iltustrated in Fig.
2. The fields (E,, H;) satisfy the following Maxwell’s Curl
equations:

{VXE—t:

“jwﬁ‘o—ﬁt
V x -H_t =7 ] E } (6)

Ji(P) + jwe By

The fields (E;, H,) can be related to the fields (Et, H t) via
the divergence theorem applied to the quantity E XxH,—E;x
H within the volume V, which is bounded by the surfaces
[ST + Sg + Se + Sy + X] as shown in Figs. 1 and 2. Thus,

/v.(Ej X Hy Ty x ) dv
Ve
. f B x Ho-Fo x ) - ivds
Y+Sc+Sg+Sr+SE

)

where 7 is the unit normal vector which points into the
region V.. Using (5) and (6), the L.H.S. of (7) reduces, via the
radiation and boundary conditions together with some vector
algebra, to

/zwyfmw: / (B’ x Ty~ Fy x T7) - ivds.
Ve Sr+SE

(3)

It is noted that the fields satisfy the radiation condition on
3 as ¥ — o0, hence the integral on 3 vanishes in (7). For
perfectly conducting walls, both 7 x E., as well as 7 x E,
vanish on S, + S, so that the integrals on those boundaries
also vanish in (7); on the other hand if these walls are coated
with absorbing layers, then S. + S, is taken to be on the
conducting walls, whereas, if the walls are impenetrable then
S, and S, can be made to lie just within the impenetrable
wall of some thickness (however small), so that the integrals
on S, and S, can be made to vanish again in (7). This leaves
one with integrals only over St and Sg on the R.H.S. of
(7), thereby leading directly to the expression on the R.H.S.
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of (8). The result in (8) constltutes a generalized reciprocity
relationship because (E., H.) and (E’t,Ht) are evaluated
in different environments, i.e., (E., ) are found with the
interior obstacle present wh1le (B, H;) are found with the
interior obstacle absent. In contrast, the standard reciprocity
theorem [1] relates a pair of fields (due to a pair of sources)
in the same environment.

Let the test current J.(P) be a point source of strength Py;
thus,

J(P) = P5(7" —7) 9)

where T is the position vector of the observation point at P
and 7 is the variable of integration (in V.) on the L.H.S. of
(8). Now, from (8) and (9) one obtains,

P, B ) :/ (B’ x - Fy x HY) - 0 ds. (10)
St+S8g

When the source and observer are in direct view of the
open front end, as in the case shown in Fig. 1, then the
contribution to E, () at P from the integration over Sg in
(10) is, in general, sufficiently small in comparison to that
from the integration over St for a relatively large obstacle,
as is assumed to be the case here. Therefore, (10) can be
approximated in this case by:

Ft-Eﬁ(F)%/ (B x T, —F x ) -nds. (1)
St

It is noted that (11) is obtained exactly if the cavity is closed
at the end Sg, or if the obstacle is assumed to totally block
Sg from S7. One can also arrive at (11) exactly if the surface
Sk is allowed to recede to infinity so that the open-ended
cavity configuration in Fig. 1 becomes semi-infinite (as Sg
recedes to 0o). In the latter case, one must impose a physical
requirement that there are only outgoing waves crossing Sg
and no waves incoming (or reflected back) into the cavity
from Sg as Sg — co. This in turn implies that the waveguide
cavity region near and at St must be assumed to be uniform
(i.e., with a constant cross section) if Sg — oo; one can
then define an orthogonal set of waveguide modes at Sg
and express (E., H.) as well as (E., H:) in terms of these
modes within the uniform waveguide region. It follows from
modal orthogonality that the integral over Sg (as Sg — o0)
vanishes in (10) for the latter case thereby leading to the
desired result in (11). On the other hand, if the waveguide
cavity is made lossy (or even slightly lossy) as Sp — oo,
then the integral over Sg in (10) vanishes once more thereby
leading again to (11). Furthermore, if it is assumed that the
interior reflection of the waves back into the cavity from the
electrically large open front end is small, then (E., TT.) at
ST may be approximated simply by the fields denoted by
(E.,H, ) within the cavity which are scattered by the obstacle,
but which exclude the effects of all multiple wave interactions
between the obstacle and the open front end. Likewise. one
may approximate (E¢. H;) at S in (11) by the fields denoted
as (E,”, H,”) which arrive directly at Sz from J¢(P) via the
open front end, but which exclude any contributions arriving
from J;(P) via the open end at Sg in Fig. 2 and which also
exclude any effects of multiple wave interactions between the

=9 g

open front end and the back end Sg; therefore, (E CHT)
are found by tracking the fields one way from J,(P) at
P to Sy via the open front end. Finally, under the above
approximations which are assumed to hold true, (11) leads to
the following desired result for the field £ (P) scattered at P
by the interior obstacle when the cavity-obstacle configuration

of Fig. 1 is illuminated externally by J (P’); namely,
E(P)-P, ~ / (Ex T - FY <) -ads. (12)
S '

It is noted that the FZ(P) on the L.H.S. of (12) can be found
via the RH.S. of (12) in terms of (£, H,) and (E;g,ﬁﬂg)
both of which need to be evaluated only over the interior
surface St near the obstacle. An alternative form of (12) can

be expressed as:

Py f(Ex

where the integration is over a closed surface S, which
encapsulates the obstacle.

I_ES XM -adS (13)

(118 ON THE EVALUATION OF (Et JH?) anD
(E Il ,) AT St FOR THE TIME- HARMONIC CASE

For relatively arbitrary cavities and for high frequencies,
(E’Zg,H ) in (12) can be evaluated, for example, by the
shooting and bouncing ray (SBR) technique [2]-[5], the Gauss-
ian beam (GB) shooting method [4], [S] or the generalized
ray expansion (GRE) technique [5]. [6]. As mentioned in the
introduction, the use of (12) requires that the fields from the
exterior sources at P and P’ need to propagate only one-way
via the open front end to St and not back. Furthermore, the
GB/GRE methods require shooting a set of beams/rays only
once from the open front end since the launching directions
of these beams/rays and hence the propagation paths within
the cavity are independent of the source location (i.e., whether
the excitation be at the original source at P’ or be at the
observation point P for generating (Eég , F;g)); only the initial
beam/ray amplitudes depend on the excitation. The fields
(E.,H.) can be found by first obtaining (E*Y, H') at Sr.
which are the fields incident from the original source J;(P’)
at P’ in the absence of the interior cavity obstacle; (E*, H'?)
are found in exactly the same manner as (E, , H, ) and are
thus based on the same assumptlons and approximations as
those required to find (E,”, H,”). It may be possible that
the interior reflection from some types of obstacles can be
analyzed using ray methods, in which case the ray fields
(E JHY ) enter the cavity after being excited by the original
source J,(P') and continue beyond S into the obstacle-
cavity reg1on to subsequently reflect back from the qbstacle
to St as (E H, o). In the event that an analytical approach
based on ray methods either cannot be used or does not
easily lend itself to find (E.,H,), it may be possible to
employ a numerical approach to accomplish this task. Such
a numerical approach may be based on a partial differential
equation solution of the wave problem using the finite element
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or finite difference methods, or the integral equation solution
based on the method of moments, or a hybrid combination of
both methods to provide (E,, H,) once (B, H") is given.
In these numerical methods, it would be worth employing the
“Green’s function” for the cavity without the obstacle in the
region beyond S which would otherwise contain the obstacle,
so that only the fields (or currents) induced in/on the obstacle
would need be found, because the presence of the cavity
walls is automatically accounted for by this Green’s function.
Furthermore, the Green’s function for the cavity without
the obstacle can be represented locally by an eigenfunction
expansion for waveguide cavities with, for example, a circular
cross section in the region where the obstacle would otherwise
be present, or be approximated via ray methods in the case
of arbitrary cavities for which modes cannot be defined in
the usual manner. If neither the analytical nor the numerical
methods can be employed effectively to find (E.,H.), as
may be the case for highly complex and electrically large
obstacles, then alternative (e.g. experimental) methods must
be employed.

It is noted that the (E., H.) can also be found, in principle,
via a different approach which employs any of the aforemen-
tioned techniques such as the ray methods, numerical methods
or other alternative (e.g. experimental) techniques to develop a
local Green’s function for the obstacle-cavity region contained
between St and Sg with the obstacle present. This local
obstacle-cavity Green’s function would provide the response
at S, due to a point source also located in the same plane St
and with the obstacle present. Such a Green’s function can
be constructed approximately, but with sufficient accuracy,
to emphasize only the local cavity-obstacle region between
St and Sg; it would then also furnish the obstacle response
(E;,H,) at St due to an excitation (E*', H") at S7 due to
the original source J; at P’. The evaluation of (E*, H'?) and
(*;g ,H,?) on Sy are totally dependent on the long waveguide
cavity shape froin the open front end (directly illuminated by
Ji(P") and J4(P), respectively) to the fictitious plane Sr;
whereas, the local cavity-obstacle Green’s function alluded
to above (and which plays a role in furnishing (E.,H.))
depends primarily on the short cavity section between St
and Sg containing the obstacle. Thus, one can separate the
effects of the short obstacle region of the cavity from the
rest of the cavity, and indeed very effectively ascertain how
a given obstacle affects a variety of long waveguide cavity
shapes connected to the short part of the cavity containing
the obstacle, and vice versa. Yet another different, but related,
approach which separates the analysis of the shape dependent
cavity region from the obstacle region is described in [7]-[9].

IV. GENERALIZED RECIPROCITY INTEGRAL FOR
INTERIOR OBSTACLE SCATTERED FIELDS FOR
ARBITRARY TIME DEPENDENT EXCITATION

The general result obtained in (8) of Section II for sinu-
soidally time varying (or time harmonic) fields can be extended
directly to fields whose time dependence is arbitrary, as will be
shown below. Indeed, a procedure for extending the frequency

domain (or time harmonic) form of a reciprocity theorem as
originally developed by Lorentz into a form valid for fields
with non-periodic time dependence has been presented by
Goubau [10]. The present procedure for the development of
the time dependent form of (8) follows essentially from [10].
Since (8) represents a result which is valid for all frequencies
(w), it can be converted as usual into the time domain via the
inverse Fourier transform defined by

1

ft) = 5 /_ B F(w)e'* dw (14a)

where f(t) is an arbitrary time dependent function synthesized
from the frequency domain spectrum function F(w). The
F(w) can be found from the direct Fourier transform of f(#)

- / "~ T)eT ar. (14b)

The relationship in (14a) and (14b), between the transform
pair f(¢) and F(w), is commonly denoted by:

f{t) = F(w).

Next, employing the spectral inversion of (14a) to (8) yields

(14c)

1

2
V.

do" / Ao T (7 w) - T, 7" )

// ds/dwe?th
27r

St+SE —o0

(r w) x Hy(T;w)

+ (7 w) x Bi(Fw)| (15)

Ton
St+SE
The orders of integration have been interchanged in (15). Fol-
lowing the notation in (14c), one may introduce the necessary
time domain field quantities via the relations:

e (T;t) — E (7‘ w); (16a)
ho(F;t) & Ho(F;w); (16b)
&(7;t) & Ey(Tsw); (17a)
Et(F; t) -I:Tt(?‘; w). (17b)
G775 ) & T(F, 75 0). (18)

At this juncture, it is useful to represent the (E, H.) spectral
(frequency dorgas}in) values in (15) by the arbitrary time domain
functions (€., h,) which they synthesize;

/dv" /dwej“’t / dr e 7°Te (r7) - i (7. 75 w)

Ve —o0
// ds/dwe“’t/drf Jwr g
Sr+Sp -0

-kmﬂxmmm

+ (i) x Bu(riw)] oy 090
T+SE
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Performing the integration on w in (19a) yields

/dv/ dres(F;7) - 5,(F, 7t — 1)

// ds/drn 7T) X (7t — 1)
Sr+Sg —oo
+ hemr) xa(mt-) L, (19)
Sr+Se

If one assumes an impulsive behavior for j, in both space and
time, then:

57,75 8) = Po(T —7") 6(1). (20)

It follows from (20) that 7,(F,7/;t—7) = Pi6(F—7F) 6(t—7);
incorporating this information into (19b) yields

= ds/dv-n

Sr+Sg — 0
. [Eﬁ(?; ) X he(Fyt — 7)

e (7it) -

ron (21)
St+SE
The above result in (21), which is in the time domain, is the
counterpart of (8) for the frequency domain. The L.H.S. of
(21) can be found via a time convolution of the fields of the
original arbitrarily time varying source located at P’, in the
presence of the cavity and obstacle, with the fields of a time
impulsive point test source at P, in the presence of the cavity
but in the absence of the obstacle. It is noted that the time
convolutions are performed at each point in S + Sg; these
are then superposed as evident from the integral over St + Sg
on the R.H.S. of (21).

If one makes the approximations leading from (8) to (12),
then onc can likewise obtain a time-dependent form of (12)
using the same procedure as above; thus:

’e‘j(?;t)?tz//ds/dm~ [Ef,(?,
ST -0

+ Ei(?; T) X (T5¢ — 7')]

'r) X Eig(?; t— T)

+ Fo(Fm) x B9(Ti b — 7)}_ . (22

where
2 (F;t) « B.(F;w); o (751) — Ho(F;w) (22b)
gl (F;t) — E ( w); E;g(T: t) < F:g(T;w) (22¢)

Since the result in (12) is obtained from (8) after using high
frequency approximations, it is thus reasonable to expect that
the time domain result for 5(7,#) in (22a) (obtained from
(12)) will provide a useful approximation to the time domain
result for 2(7,t) in (21) (obtained from (8)) only during the
early to intermediate times of arrival of the signal €3(F,¢)
which is observed at the point P. The quantities on the right
side of (22a) may be found by transforming the corresponding
frequency domain fields (see (22b) and (22c)) into the time
domain; alternatively, they could be found directly in the time
domain, The latter aspect will be discussed in more detail in
a separate paper.
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Fig. 3. Echo width versus aspect angle for a 2-D S-shaped open-ended cavity
with a planar termination found using the reciprocity integral (RI) with the
GRE and SBR methods.

V. NUMERICAL RESULTS

Figs. 3 and 4 show the EM echo width vs. aspect angle
patterns of a perfectly conducting 2-D S-shaped open-ended
waveguide cavity with a planar interior termination. The 2-D
echo width ¢ is defined by

=512
o= lim 27Tp|EC_ILM7 (23)
p—rco B2

where p is the vector to the far field observer (at P),EZI (p) is
the field at p scattered by the interior termination of the cavity,
as given by (12), and [F] is the magnitude of the plane wave
field incident on the open front end (P’ is located at infinity to
create an incident plane wave). In Figs. 3 and 4, the echo width
is given in decibels relative to a wavelength (DBW) (i.e., as
10 log o with ¢ in free space wavelengths), and the incident
electric field is polarized perpendicular to the plane of the
geometry. It is noted that only the first order scattering from
the interior of the cavity is shown in these figures. No external

scattering or multiple wave interaction effects are included.

The solid line in the plots of Figs. 3 and 4 is calculated using
the hybrid asymptotic-modal method [4], [5] and is used as a
reference solution. The dashed lines are solutions based on the
SBR [2]-{5] and GRE [5], [6] methods; in Fig. 3, the one-way
tracking procedure of the generalized reciprocity integral of
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Fig. 4. Echo width versus aspect angle for a 2-D S-shaped open-ended cavity
with a planar termination found using aperture integration (AI) with the GRE
and SBR methods.

(12) is used, and in Fig. 4, the two-way tracking procedure of
the aperture integration method is used. The numerical results
in Fig. 3 which are based on the one way ray tracking that
makes use of the reciprocity integral can be obtained almost
twice as fast as the ones in Fig. 4 that require a two-way
tracking. To compute the generalized reciprocity results of
Fig. 3, the ray fields at the termination plane are converted into
parallel plate waveguide modes and the orthogonality property
of the modes is used to easily evaluate (12). Generally, the type
of results in Fig. 3 can be obtained in less than a couple of
minutes on, for example, a VAX 8550 computer.

This method can also be employed with the same degree of
success for 3-D problems which are currently under study; the
solutions to these will be reported later along with results for
fields with non-periodic or arbitrary time dependence.

REFERENCES

[11 R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961.

[2] H. Ling, R. Chou, and S. W. Lee, “Shooting and bouncing rays: Cal-
culating RCS of an arbitrary cavity,” [EEE Trans. Antennas Propagat.,
vol. 37, no. 2, pp. 194205, Feb. 1989.

[3] H. Ling, S. W. Lee, and R. C. Chou, “High-frequency RCS of open
cavities with rectangular and circular cross sections,” IEEE Trans.
Antennas Propagat., vol. 37, no. 5, pp. 648-654, May 1989.

[4] P. H. Pathak and R. J. Burkholder, “Modal, ray and beam techniques
for analyzing the EM scattering by open-ended waveguide cavities,”
IEEE Transactions Antennas Propagat., vol. 37, no. 5, pp. 635-647,
May 1989.

[5] R.J.Burkholder, “High-frequency asymptotic methods for analyzing the

EM scattering by open-ended waveguide cavities,” Ph.D. dissertation,

The Ohio State University, June 1989.

P. H. Pathak and R. J. Burkholder, “High frequency EM scattering by

open-ended waveguide cavities,” Radio Science, vol. 26, no. 1, pp.

211-218, Jan—Feb. 1991.

P. H. Pathak, P. H. Law, G. Crabtree, and D. Foreman, “High frequency

electromagnetic scattering by open-ended waveguide cavities with a

complex interior termination,” presented at the 1990 I[EEE AP-S Int.

Symposium and URSI National Radio Science Meetmg, Dallas, TX, May

6-11.

[8] P. H. Pathak, P. H. Law, and R. J. Burkholder, “Analysis of high
frequency EM scattering by open-ended waveguide cavities containing a
complex interior obstacle,” Technical Report 722592-1, The Ohio State
University Electro-Science Laboratory, prepared for General Electric
Co., Cincinnati, OH, under. Contract 14U11685, Mar. 1990,

[9] P.Law, “Analysis of EM scattering by open-ended waveguides contain-

ing complex obstacles,” Ph.D. dissertation, The Ohio State University,

Dept. of Electrical Engineering, 1990.

G. Goubau, “A reciprocity theorem for nonperiodic fields,” IEEE Trans.

Antennas Propagat., vol. AP-8, no. 3, pp. 339-342, May 1960.

[6

[y

[7

—

[10]

Prabhakar H. Pathak = (M'76-SM’81-F’86) re-
ceived the B.Sc. degree in physics from the Uni-
versity of Bombay, India, in 1962, the B.S. degree
in electrical engineering from the Louisiana State
University, Baton Rouge, in 1965, and the M.S.
and Ph.D. degrees from The Ohio State University
(OSU), Columbus, in 1970 and 1973, respectively.

From 1965 to 1966 he was an Instructor in
the Department of Electrical Engineering at the
University of Mississippi, Oxford. During the sum-
mer of 1966 he worked as an electronics enginesr
with Boeing Company, Renton, WA. Since 1968 he has been with the
OSU ElectroScience Laboratory. His research interests are in mathematical
methods, electromagnetics, and uniform ray techniques. In 1983, he joined
the faculty of the Department of Electrical Engineering, The Ohio State
University, where he is currently a Professor. He has contributed to-the
development of the uniform geometrical theory of diffraction (UTD), which
can be applied to analyze a variety of practical electromagnetic antenna
and scattering problems. His work continues to be in the UTD and other
high-frequency techniques, as well as in the analysis of guided waves, and
microstrip and reflector antennas using high-frequency asymptotic procedures.
He has presented invited lectures, and several short courses on the UTD, both
in the U.S. and abroad. He has also authored and coauthored chapters on
ray methods for five books. He has served as Associate Editor for the IEEE
TRANSACTIONS ON ANTENNAS AND PROPAGATION for about five
years. Currently, he is serving as an IEEE AP-S distinguished lecturer.

Dr. Pathak is a member of Commission B of the International Scientific
Radio Union (URSI) and Sigma Xi.

Robert J. Burkholder (M’89) received the B.S.,
M.S. and Ph.D. degrees in electrical engineering
from The Ohio State University, Columbus, in 1984,
1985, and 1989, respectively. As an undergraduate
he worked as a co-op student for General Electric
in East Cleveland, Ohio.

He is currently with The Ohio State University
ElectroScience Laboratory. as a Postdoctoral Re-
search Associate. In his dissertation, he contributed
to the development of modal, ray and beam ap-
proaches for analyzing the electromagnetic (EM)
fields scattered from and coupled into electrically large non-uniform open-
ended waveguide cavities. His. research interests are in the areas of high
frequency, modal and hybrid techniques for solving EM antenna and scattering
problems. Currently, he is working on the analysis of the EM scattering by
open cavities and antenna radiation and coupling in complex environments.



